Kansas Hub

The existing landscape of industrial production, commodity transport infrastructure, and geologic carbon storage capacity give Kansas unique advantages in jumpstarting investment in carbon capture and low-carbon hydrogen deployment. The geographic extent of the Kansas hub is based on the CCUS hub proposed by Kansas Geological Survey and DOE's Carbon Utilization and Storage Partnership.

Industrial Emissions and Fossil Fuel Use

H2 H2 Hydrogen production and nearby fossil fuel use

Kansas is home to industries including ethanol production, natural gas processing, and pulp and paper manufacturing. Facilities in the Kansas hub emit 2.7 million metric tons (Mt) of CO₂e annually, including 2.1 Mt from stationary combustion and 600,000 from process emissions. Several natural gas liquids fractionation plants and gas processing facilities in this regional hub are the focus of a hub proposed by Kansas Geological Survey (KGS) and DOE's Carbon Utilization and Storage Partnership.

There are three hydrogen-producing facilities located in close proximity to the Kansas hub. A recent concept paper also discussed plans to install additional hydrogen generation facilities in this regional hub in the near future. Industrial facilities in the Kansas hub use a total of 25 million MMBtu of fossil fuels per year.

Hydrogen can be used as a low- or zero-carbon alternative to fossil fuels at industrial facilities. Clusters of hydrogen production and fossil fuel demand can facilitate technology deployment and jumpstart the transition to hydrogen.

H2 Existing hydrogen production Fossil fuel use at industrial facility

Industrial facility emissions							
Sector	Total # of Facilities	Total Emissions	Stationary Combustion Emissions	Process Emissions			
Ethanol	2	0.6	0.1	0.4			
Gas processing	18	2.0	1.7	0.2			
Metals, minerals & other	4	0.2	0.2	-			
Pulp & paper	1	< 0.1	< 0.1	-			
Total	25	2.7	2.1	0.6			

The top industrial fuels consumed in the Kansas hub include natural gas at 21 MMBtu per year and petroleum coke million MMBtu per year. Gas processir plants are the largest consumers of for in this regional hub, consuming 19 mil MMBtu of fossil fuels per year.

Using hydrogen as a medium- and high intensity energy source to displace conventional fossil fuels can reduce combustion emissions alongside other solutions like electrification and renewab energy. Process emissions from product manufacture are another major source o GHGs at industrial facilities. These produ processes may not involve fuel combust and would require other solutions such carbon capture to fully decarbonize.

All emissions are in million metric tons CO₂e.

the million at 2.8	Top industrial fuels consumed 10 20			
ing	Natural gas		21	
ossil fuels	Petroleum coke	2.8		
illion	Fuel gas	1.2		
	Biomass gases	0.01		
gh-	Distillate fuel oil	< 0.01	Million MMBtu	

Largest fuel-consuming industries

ble			10	20
rt of	Gas processing			19
luction	Metals & minerals	3.2		
stion as	Ethanol	2.2		
ao	Pulp & paper	0.56	Million MMBtu	

Kansas Hub

Carbon capture and storage is an essential tool for achieving midcentury climate goals, maintaining the competitiveness of US industry, and protecting and creating high-wage jobs. Carbon capture is crucial in decarbonizing key carbon-intensive industries where CO₂ emissions are inherent to the chemistry of production processes and cannot be eliminated solely by switching to low-carbon electricity. The US has capacity to safely and permanently store thousands of years of carbon emissions in geologic saline formations.

Carbon Capture and Storage

CO₂ storage opportunities

The Section 45Q tax credit lowers cost barriers to carbon capture and storage. There are two industrial facilities in the Kansas hub that meet emissions thresholds for Section 45Q eligibility. Both facilities have been identified as near- to medium-term candidates for capture retrofit over the next 10 to 15 years.

45Q-eligible facilities by industry

C Ethanol

) Near- to medium-term

Additional emitting facility

Kansas has potential to act as a major carbon storage destination for capture facilities and carbon removal. The state of Kansas has potential to store 37 billion metric tons of CO₂ in secure geologic saline formations, and also has extensive capacity for carbon storage in geologic fossil basins such as oil and gas fields. The Kansas hub is the focus of a KGS and DOE study aiming to identify potential CO₂ resevoirs for long-term geologic storage.

Geologic storage opportunity

- Assessed low-cost saline storage
- Saline CO₂ storage formation
- High Fossil CO2 storage formation
- + Existing petroleum production site

Carbon capture opportunities

Fossil storage formations by CO₂ storage capacity

- 45Q-eligible
- Near- to medium-term

- Industrial and power facilities emit 2.7 Mt CO₂e per year
- 45Q-eligible facilities emit 600,000 mt CO₂e per year
- 300,000 mt CO₂ per year are **capturable** in the near- to medium-term

100

200

247

Saline storage formations by CO₂ storage capacity

185

Arbuckle Anadarko Basin 147 Canyon Cherokee Platform 40 Arkoma Basin 34 Wolfcamp 31 27 Cisco Misener 11 Reagan 10 Billion metric tons Simpson 1.2

Kansas Hub

Industrial hubs can offer existing transportation infrastructure, delivery routes, and distribution networks needed for the efficient supply of feedstocks and delivery of products. Hydrogen may be blended into existing natural gas pipelines for co-firing, and both carbon and hydrogen could be transported by rail, freight trucking, or barge. Existing pipeline rights-of-way may be crucial for efficient and equitable routing of new CO₂ pipelines for utilization and permanent storage.

Transport Infrastructure

Many industrial facilities are located along rail lines and often use rail transport to import and export goods. Railroads can also play a role in transporting captured carbon and hydrogen. Many of the facilities in the Kansas hub are located along major rail lines, facilitating connection to markets across the US.

Railroad networks

Union Pacific Railroad **BNSF** Railway CSX Transportation Norfolk Southern Railway All others

Logistical challenges to carbon and hydrogen pipeline deployment can be reduced by following existing right-ofway of natural gas and oil lines. The Kansas hub currently has 6,178 miles of natural gas pipelines and 3,421 miles of oil pipelines.

Infrastructure	Miles
Natural gas pipelines	6,178
Oil pipelines	3,421

45Q-eligible facility Existing hydrogen production

> Existing CO₂ pipelines Natural gas pipelines

Freight trucks and barges can each play a role in the development of carbon and hydrogen transport networks. Both transport options are flexible, enabling routes to evolve over time and the frequency of transport to adapt in line with the volume of material being transported. Major ports along rivers in the Midcontinent region can connect Kansas with broader markets for carbon and hydrogen.

- Interstate highway
- Navigable waterway
- 🖞 Major port

Kansas is centrally located between areas of rich geologic storage resource and existing CO₂ utilization. This offers potential for the state to become a nexus of long-distance CO₂ transport corridors under future scenarios where major CO₂ capture, transport, and storage occurs in accordance with US decarbonization goals. The state of Kansas has 14 miles of existing CO₂ pipeline, and unlike most other states, is adjacent to a major concentration of the nation's existing CO₂ pipelines.

Existing CO₂ pipelines Hydrocarbon gas liquids pipelines Petroleum pipelines

GPI's Atlas of Carbon and Hydrogen Hubs

An Atlas of **Carbon and Hydrogen Hubs**

for United States Decarbonization

February 2022

GREAT PLAINS INSTITUTE

About the Great Plains Institute

A nonpartisan, nonprofit organization, the Great Plains Institute (GPI) is transforming the energy system to benefit the economy and environment. Working across the US, we combine a unique consensus-building approach, expert knowledge, research and analysis, and local action to find and implement lasting solutions. Our work strengthens communities and provides greater economic opportunity through creation of higher paying jobs, expansion of the nation's industrial base, and greater domestic energy independence while eliminating carbon emissions.

Learn more: www.betterenergy.org

Download the report at carboncaptureready.org

